
This chapter provides the instruction of the integration with the solution and with it's methods.
Prior to using this solution the Merchant have to proceed onboarding process. To create account
please contact with support. The PayTool solution provides three integrations models: Web SDK,
API and One Time Payment API. Each of the integration models is independent of each other.
This means that if the Customer chooses the Web SDK integration model, he no longer needs the
API model.

1. Web SDK - integration with the PayTool’s payment process through the JavaScript library
2. API - integration with the PayTool’s payment process using server-server connection
3. One Time Payment API - this is alternative API integration model - recommended for

Merchant which are collecting sensitive transaction data by their own.

This section describes how to integrate the solution using the SDK provided by Verestro.

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F

Technical Documentation

Overview

Verestro recommends to use SDK integration model.

One time payment API is a separate service and its integration is intended for Merchant who
themselves collect/store sensitive data such as card number.

Integration
SDK

https://developer.verestro.com/books/web-checkout/page/onboarding

skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "Merchant App (Browser)" as browser
participant "Paytool Frontend" as pfront
participant "Paytool SDK" as psdk
participant "Paytool Backend" as pback
participant "Merchant Server" as custback
participant "Acquirer" as acq
note right of browser: User chooses "Pay with Merchant Paytool" (1)
browser->pfront
pfront->psdk: Begin transaction (2)
psdk->pback: Transaction preinitialize /preinit (3)
pback->pback: Store transaction session data (4)
pback->psdk: OK - returns transactionId (5)
psdk->pfront: Redirect with transactionId (6)
pfront->pback: Get transaction (from point 3) (7)
pback->pfront: Returns transaction details (8)
pfront->pfront: User filling data (CN, CVC, EXP) (9)
pfront->pfront: Encrypt data (from point 9) (10)
pfront->pback: Perform transaction /transaction/TRX_ID + enc body (11)
pback->acq: Transaction with 3DS (12)
note left of acq: At this point 3D Secure process takes place
acq->pback: Response (13)
pback->pfront: Transaction Result (14)
pback->custback: Send postback to provided URL (15) (Optional - configurable)
pfront->browser: redirect User (success/failure) (16)
custback->pback: Get transaction status (17) (optional but hardly recommended in case when
postbacks are disabled)
pback->custback: Return transaction status (18)
custback->browser: Provide transaction result (19)
@enduml

The SDK adds MerchantPayTool class to the global JavaScript scope which can be further
instantiated to start PayTool’s payment process. Alternatively, it also defines a custom element
called merchant-paytool for a more straightforward, plug-and-play solution.

An optional step is to send a transaction status notification to the Merchant Server. Details of the
notification are described in the section Postbacks.

In addition to the web SDK itself, the solution provides a GET API method Get transaction details
that allows the Merchant to get the transaction status using "transactionId" parameter. This
method is optional but we hardly recommend to use it.

Initialization Add the following script to your website:

Test environment

Production environment

init

Starts PayTool's payment process using the provided data. After successful initialization, resolves a promise and
redirects to PayTool's website. Rejects a promise if any error occurs.

(class approach only)

Parameters

data
initData

Returns

Promise<void>

The merchant-paytool.js is a JavaScript-based client-side SDK for Merchant PayTool.

API Reference

<script type="module" src="https://merchant-paytool.verestro.dev/merchant-

paytool.js"></script>

<script type="module" src="https://merchant-paytool.verestro.com/merchant-

paytool.js"></script>

The type="module" attribute is currently required, because the SDK utilizes modern
JavaScript code splitting syntax.

SDK Methods

https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-postbacks
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-get-transaction-deta

Data object passed to PayTool's backend API.

initData

Name Type Description

apiKey string Merchant identifier, given during
onboarding.

amount number Transaction amount in the lowest unit
of money, fe. cents for USD.

currency string Transaction currency code.

description string Short description of transaction.

redirectUrls object

Optional return url object. If not
provided, urls from merchant’s config
will be used instead.PayTool might
append additional query parameters
to the urls, fe. a transaction identifier.

redirectUrls.successUrl string The url where users will be redirected
after a successful payment.

redirectUrls.failureUrl string The url where users will be redirected
after a failed payment.

The SDK offers different ways to initialize a payment. It can do most of the heavy lifting by itself,
including UI, but it also exposes a lower-end API to let you customize your UX.

Interfaces

Optional: Merchant can get transaction details using Get transaction details method. This
method is an API method. More details can be found below in API chapter.

Optional: Merchant can create HTTP POST endpoint which will accept requests in format
JSON. If this option is enabled, the Paytool API will send information about the transaction
made to the endpoint/domain provided by the Merchant. More details can be found below in
API chapter.

Examples

Class approach
Angular

https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-api
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-api

{

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<button (click)="onClick()">Pay</button>',

})

export class AppComponent {

 payTool = new MerchantPayTool();

 onClick() {

 this.payTool

 .init({

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL'

 }

 })

 .catch(console.log);

 }

}

}

React

export const App = () => {

 const payTool = new MerchantPayTool();

 return (

 <button

 onClick={() => {

 payTool

 .init({

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL'

 }

 })

 .catch(console.log);

 }}>

 Pay

 </button>

);

};

Plain JavaScript

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <script

 type="module"

 src="https://merchant-paytool.verestro.com/merchant-paytool.js"

 ></script>

 </head>

 <body>

 <button id="pay-btn">Pay</button>

 <script>

 var payButton = document.getElementById('pay-btn');

 payButton.addEventListener('click', function () {

 var payTool = new MerchantPayTool();

 payTool

 .init({

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL'

 }

 })

This approach focuses on modern solutions to help your integrate with PayTool as fast as possible
and keep your code clean, providing a pre-built "Click to Pay" button. The component accepts data
as Init Data, similarly to the init method.

 .catch(console.log);

 });

 </script>

 </body>

</html>

Web component approach

Angular

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<merchant-paytool [data]="data"></merchant-paytool>',

})

export class AppComponent {

 data = {

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL',

 },

 };

}

React@^18

export const App = () => {

 return (

 <merchant-paytool

 ref={el => {

 if (el) {

 el.data = {

https://merchant-beta.upaidtest.pl/champion/docs/paytool.html#init

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL'

 }

 };

 }

 }}

 />

);

};

React@experimental

export const App = () => {

 return (

 <merchant-paytool

 data={{

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL'

 }

 }}

 />

);

};

Plain JavaScript

export const App = () => {

 return (

 <merchant-paytool

 data={{

This section describes how to integrate the solution using the REST API provided by Verestro.

@startuml
skinparam ParticipantPadding 30
skinparam BoxPadding 30
skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {
ArrowColor #1C1E3F
ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F
}
participant "Merchant App (Browser)" as browser
participant "Paytool Frontend" as pfront
participant "Paytool Backend" as pback
participant "Merchant Server" as custback
participant "Acquirer" as acq
note right of browser: User chooses "Pay with Merchant Paytool" (1)

 apiKey: 'YOUR_API_KEY',

 amount: 9999,

 currency: 'CURRENCY_CODE',

 description: 'TRANSACTION_DESCRIPTION',

 redirectUrls: {

 successUrl: 'YOUR_SUCCESS_URL',

 failureUrl: 'YOUR_FAILURE_URL'

 }

 }}

 />

);

};

API

browser->pback: Transaction preinitialize /preinit (2)
pback->pback: Store transaction session data (3)
pback->browser: OK - returns transactionId (4)
browser->pfront: Redirect with transactionId (5)
pfront->pback: Get transaction (from point 3) (6)
pback->pfront: Returns transaction details (7)
pfront->pfront: User filling data (CN, CVC, EXP) (8)
pfront->pfront: Encrypt data (9)
pfront->pback: Perform transaction /transaction/TRX_ID + enc body (10)
pback->acq: Transaction with 3DS (11)
note left of acq: At this point 3D Secure process takes place
acq->pback: Response (12)
pback->pfront: Transaction Result (13)
pback->custback: Send postback to provided URL (14) (Optional - configurable)
pfront->browser: redirect User (success/failure) (15)
custback->pback: Get transaction status (16) (optional but hardly recommended in case when
postbacks are disabled)
pback->custback: Return transaction status (17)
@enduml

The PayTool API allows Merchant to perform the Paytool’s payment process. The first step is to
initialize the payment using method "PreInitialize". Then, the Merchant Website should redirect the
user to the Paytool Website with the transactionId obtained in the first step. Redirect url should
build according to schema described in section "Endpoints for PayTool Website". Next step, on the
PayTool side the payment process will be executed. When it is finished, the user will be redirected
to the address specified by the Merchant in the method "PreInitialize".

An optional step is to send a transaction status notification to the Merchant Server. Details of the
notification are described in the section "Postbacks".

Additionally, the PayTool API provides a method that allows the Merchant to "Get transaction
details" using "transactionId" parameter.

@swagger="https://files.verestro.dev/merchant-public/paytool-api-integration.yaml"

This chapter provides information about the technical requirements of the One Time Payment API
and the scructure of the objects which are need to be integrated with.

@swagger="https://files.verestro.dev/merchant-public/one_time_payment_1_0_4.yaml"

One Time Payment API

https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-preinitialize
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-endpoints-for-paytoo-0
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-preinitialize
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-postbacks
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-get-transaction-deta
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-get-transaction-deta

OneTime Payment API supports encryption of requests as standard JSON Web Encryption (JWE) per
RFC 7516. Recommended to read the JWE standard: RFC 7516.

JWE represents encrypted content using JSON data structures and Base64 encoding. The
representation consists of three parts: a JWE Header, a encrypted payload, and a signature. The
three parts are serialized to UTF-8 bytes, then encoded using base64url encoding. The JWE’s
header, payload, and signature are concatenated with periods (.).

JWE typically takes the following form:

Type Value Constraints Description

alg RSA-OAEP-256 Required

Identifies the cryptographic
algorithm used to secure
the JWE Encrypted Key.
Supported algorithms: RSA-
OAEP-256, RSA-OAEP-384,
RSA-OAEP-512.
Recommend value: RSA-
OAEP-256.

enc A256GCM Required

Identifies the cryptographic
algorithm used to secure
the payload. Supported
algorithms:A128GCM,
A192GCM, A256GCM,
A128CBC-HS256, A192CBC-
HS384, A256CBC-HS512.
Recommend value:
A256GCM.

typ JOSE Optional
Identifies the type of
encrypted payload.
Recommend value: JOSE.

iat 1637929226 Optional

Identifies the time of
generation of the JWT
token. Supported date
format: unix time in UTC. In
the case of iat send, the
validity of JWE is validated.
Recommend send the
header due to the increase
in the security level.

JWE

{Base64 encoded header}.{Base64 encoded payload}.{Base64 encoded signature}

JWE header

https://datatracker.ietf.org/doc/html/rfc7516

Type Value Constraints Description

kid 5638742a57 Optional

Identifies the public key of
use to encrypt payload.
Supported format: SHA-1
value of the public key. In
the case of kid send, the
validity of public key is
validated, so we can inform
the client that the public
key has changed.

Every encrypted request should include JWE token. The jwe token should be passed in the field
indicated in the method. To prepare the encrypted payload.The steps may differ depending on the
libraries used:

1. Get the public key using the method: Get Public Key. The public key is encoded with
Base64.

2. Decode the public key.
3. Then create a correct object to be encrypted.
4. Encrypt the created object with the public key.
5. Create JWE header compatible with: JWE Header.
6. Make a request on the method that supports JWE. Set the JWE token in the field indicated

in the method.

The encrypted payload consists of the fields presented below in JSON format:

One Time Payment API is available on two environments: Beta (for tests) and Production.

Payload encryption

Encrypted Data

 {

 "cardNumber": "5325943450735905",

 "cvc": "123",

 "expDate": "12/24",

 "firstName": "firstName",

 "lastName": "lastName",

 "phone": "48123123123",

 "email": "test@verestro.com"

 }

Enpoints for One Time Payment API

Environemt Base url

Beta https://merchant-beta.upaidtest.pl/champion/

Production https://merchant.upaid.pl/champion/

Methods created in One Time Payment API are created in accordance with the principles of the
REST methodology. Through these methods Merchant is able to make a payment. The data
transferred during the execution of oneTimePaymentWithout3ds and initOneTimePayment3ds requests
accept encrypted card data and user data. The data that should be encrypted is available here. The
merchant retrieves the Verestro public key using the getPublicKey method and then encrypts the
data. Encrypted sensitive data is transferred to Verestro. The methods are secured by Basic
Authorization - Merchant's account login details in the Verestro system. The merchant receives this
data during the onboarding process.

POST [base-url]/one-time-payment

This method allows to authorize and process the entire transaction without 3DS authentication. To
perform MOTO transaction, pass transactionType=MOTO .

Request headers:

Type Value Constraints Description

Content-Type application/json Required Content type of the request

Authorization Basic
bG9naW46cGFzc3dvcmQ= Required Basic Authorization token

Request body:

Methods in One Time Payment API

One time payment without 3ds

{

 "transactionType": "MOTO",

 "amount": 100,

 "currency": "EUR",

 "description": "Description of transaction: f34e8330-99fe-4ca4-8ee7-3628c989a6e2",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY...",

 "itemId": "f34e8330-99fe-4ca4-8ee7-3628c989a6e2",

https://merchant-beta.upaidtest.pl/champion/
https://merchant.upaid.pl/champion/
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-initialize-one-time-
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-initialize-one-time--0
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-encrypted-data
https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-get-public-key
https://developer.verestro.com/books/web-checkout/page/onboarding

Request fields:

Type Value Constraints Description

transactionType String Not null

Indicates whether the
transaction is MOTO or
AUTH. Default value AUTH.
If MOTO then one of
parameters: cvc or
addressDetails is required.

amount Number Not null Transaction amount (in
pennies)

currency String Not empty Transaction currency

description String Not empty Simple description of
transaction

encryptedData String Not empty

The field contains
encrypted JSON using the
JWE standard. Object
encryptedData is described
in section of schemas.

itemId String Not empty

Merchant’s unique id of
transaction. Ensures the
idempotency of the
transaction. The same in
the entire 3ds process.

 "mid": "83e6c996-3a4d-470a-89c3-8952ac3648b7"

}

Request fields:

Type Value Constraints Description

mid String Optional

This parameter indicates
which account will be used
in the process. If mid won’t
be passed, then payment
will be processed using the
default account.This value
will be generated in the
onboarding process.

Example cURL:

Response body:

HTTP Response OK:

$ curl 'https://merchant.upaid.pl/champion/one-time-payment' -i -X POST \

 -H 'Content-Type: application/json' \

 -d '{

 "transactionType": "MOTO",

 "amount": 100,

 "currency": "EUR",

 "description": "Description of transaction: f34e8330-99fe-4ca4-8ee7-3628c989a6e2",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY...",

 "itemId": "f34e8330-99fe-4ca4-8ee7-3628c989a6e2",

 "mid": "83e6c996-3a4d-470a-89c3-8952ac3648b7"

}'

HTTP/1.1 200 OK

Content-Length: 209

Content-Type: application/json;charset=UTF-8

{

 "transactionId" : "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "itemId" : "f34e8330-99fe-4ca4-8ee7-3628c989a6e2",

 "status" : "DEPOSITED",

 "externalTransactionId" : "49a91f00-26b4-49a2-9c77-ed37646ddf64"

Response fields:

Type Value Constraints

transactionId String Identifier of transaction

itemId String

Merchant’s unique id of transaction.
Ensures the idempotency of the
transaction. The same in the entire
3ds process.

status String Transaction status

externalTransactionId String External transaction id

POST [base-url]/one-time-payment/3ds/init

The method allows doing initialize payment using ThreeDs 2.0 protocol. As a response there are 3
possible paths:

Frictionless flow - In the response: threeDsMode = FRICTIONLESS is present. This
response denotes that payment was finished.
ThreeDsMethod flow - In the response: threeDsMode = THREE_DS_METHOD is
present. This response denotes that ThreeDsMethod flow is required. Browser should
make hidden request to ACS URL (parameter in response: threeDsMethodUrl) with passing
threeDSMethodData (parameter in response: threeDSMethodData). After that ACS send
the notification for endpoint provided in the threeDsMethodNotificationUrl. Based on this
notification methodCompletionIndicator parameter should be set in the request for
method: /one-time-payment/3ds/continue.
After executing ThreeDs method flow, make a request for the method: /one-time-
payment/3ds/continue.
Important: This path could be disabled during the onboarding process - Frictnionless and
Challenge flow left. Avoiding the ThreeDsMethod flow simplifies the integration - the
continue method will be performed internally in the OneTimePayment API.
Challenge flow - In response: threeDsMode = CHALLENGE is present. This response
denotes that the challenge process is required. In this flow pageContent is present. The
parameter should be decoded and presented to the user for interaction (challange). After
the challenge end, html will redirect the user to URL passed in the termUrl parameter.

}

Initialize one time payment with 3ds

The finalize request should be performed then.

Request headers:

Type Value Constraints Description

Content-Type application/json Required Content type of the request

Authorization Basic
bG9naW46cGFzc3dvcmQ= Required Basic Authorization token

Request body:

Request fields:

Type Value Constraints Description

{

 "amount": 100,

 "currency": "EUR",

 "description": "Description of transaction: f9814a71-ec77-4998-b354-1fec8bf73a59",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY...",

 "termUrl": "https://termurl.verestro.com",

 "threeDsMethodNotificationUrl": "https://threedsmethodnotificationurl.verestro.com",

 "requestChallengeIndicator": "NO_PREFERENCE",

 "itemId": "string",

 "mid": "83e6c996-3a4d-470a-89c3-8952ac3648b7",

 "browserDetails": {

 "ipAddress": "77.55.135.220",

 "javaEnabled": true,

 "jsEnabled": true,

 "screenColorDepth": 1,

 "screenHeight": 1500,

 "screenWidth": 1500,

 "timezoneOffset": 60,

 "language": "EN"

 }

}

amount Number Not null Transaction amount (in
pennies)

currency String Not empty Transaction currency

description String Not empty Simple description of
transaction

encryptedData String Not empty

The field contains
encrypted JSON using the
JWE standard. Object
encryptedData is described
in section of schemas.

termUrl String Not empty

Merchant Callback URL -
User will be redirected on
this URL after a successful
pareq/cReq request

threeDsMethodNotification
Url String Optional URL where ACS will notify

about finish 3ds method.

requestChallengeIndicator String Optional

Indicates whether a
challenge was requested
for transaction.
Possible values:
NO_PREFERENCE - no
preference for challenge.
CHALLENGE_NOT_REQUE
STED - challenge is not
requested.
CHALLENGE_PREFER_BY_
REQUESTOR_3DS -
challenge is requested: 3DS
Requestor preference.
CHALLENGE_REQUESTED
_MANDATE - challenge is
requested: mandate.
RISK_ANALYSIS_ALREAD
Y_PERFORMED - challenge
is not requested:
transactional risk analysis
already performed.
ONLY_DATA_SHARE -
challenge is not requested:
only data is shared.
STRONG_VERIFY_ALREA
DY_PERFORMED -
challenge is not requested:
strong consumer
authentication is already
performed.
WHITELIST_EXEMPTION -
challenge is not requested:
utilise whitelist exemption if
no challenge required.
WHITELIST_PROMPT_RE
QUESTED - challenge is
requested: whitelist prompt
requested if challenge
required.

itemId String Not empty

Merchant’s unique id of
transaction. Ensures the
idempotency of the
transaction. The same in
the entire 3ds process.

browserDetails Object Required Browser Details Object

browserDetails.ipAddress String Required by some
Acquirers

This field contains the IP
address of the cardholder’s
browser as returned by the
HTTP headers.

browserDetails.javaEnabled Boolean Required by some
Acquirers

This field contains a value
representing the ability of
the cardholder’s browser to
execute Java. Required if
jsEnabled=true

browserDetails.jsEnabled Boolean Required by some
Acquirers

This field contains a value
representing the ability of
the cardholder’s browser to
execute JavaScript

browserDetails.screenColor
Depth Number Required by some

Acquirers

This field contains a value
representing the bit depth
of the color palette, in bits
per pixel, for displaying
images. Values accepted:
1 = 1 bit,
4 = 4 bits,
8 = 8 bits,
15 = 15 bits,
16 = 16 bits,
24 = 24 bits,
32 = 32 bits,
48 = 48 bits
. Required when
jsEnabled=true.

browserDetails.screenHeigh
t Number Required by some

Acquirers

This field contains the total
height of the cardholder’s
screen in pixels. Required
when jsEnabled=true

browserDetails.screenWidth Number Required by some
Acquirers

This field contains the total
width of the cardholder’s
screen in pixels. Required
when jsEnabled=true.

browserDetails.timezoneOff
set String Required by some

Acquirers

This field contains the
difference between UTC
time and the cardholder’s
browser local time in
minutes. Required if
jsEnabled=true

browserDetails.language String Required by some
Acquirers

This field contains the
cardholder’s browser
language as defined in IETF
BCP 47

mid String Optional

This parameter indicates
which account will be used
in the process. If mid won’t
be passed, then payment
will be processed using the
default account. This value
will be generated in the
onboarding process.

Example cURL:

curl -X 'POST' \

 'https://merchant-beta.upaidtest.pl/champion/one-time-payment/3ds/init' \

 -H 'accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

 "amount": 100,

 "currency": "EUR",

 "description": "Description of transaction: f9814a71-ec77-4998-b354-1fec8bf73a59",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY...",

 "termUrl": "https://termurl.verestro.com",

 "threeDsMethodNotificationUrl": "https://threedsmethodnotificationurl.verestro.com",

 "requestChallengeIndicator": "NO_PREFERENCE",

 "itemId": "string",

 "mid": "83e6c996-3a4d-470a-89c3-8952ac3648b7",

Response body:

HTTP Response OK - FRICTIONLESS:

HTTP Response OK - CHALLENGE:

 "browserDetails": {

 "ipAddress": "77.55.135.220",

 "javaEnabled": true,

 "jsEnabled": true,

 "screenColorDepth": 1,

 "screenHeight": 1500,

 "screenWidth": 1500,

 "timezoneOffset": 60,

 "language": "EN"

 }

}'

HTTP/1.1 200 OK

Content-Length: 2153

Content-Type: application/json;charset=UTF-8

{

 "transactionId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "status": "DEPOSITED",

 "approvalCode": "20210615100078475104",

 "pageContent": null,

 "externalTransactionId": "49a91f00-26b4-49a2-9c77-ed37646ddf64",

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "acsUrl": null,

 "threeDsMode": "FRICTIONLESS",

 "threeDsMethodUrl": null,

 "threeDSMethodData": null,

 "creq": null

}

HTTP/1.1 200 OK

Content-Length: 2153

Content-Type: application/json;charset=UTF-8

{

HTTP Response OK - THREE_DS_METHOD:

Response fields:

Type Value Constraints

transactionId String Identifier of transaction

status String Transaction status

approvalCode String Acquirer approval code

 "transactionId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "status": "INITIALIZED",

 "pageContent": "PGh0bWw+PFNDUklQVCBMQU5HVUFHRT0iSmF2YXNjcmlwdCI+Zn....",

 "orderNumber": null,

 "externalTransactionId": "49a91f00-26b4-49a2-9c77-ed37646ddf64",

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "acsUrl": "http://acs-site.com",

 "threeDsMode": "CHALLENGE",

 "threeDsMethodUrl": null,

 "threeDSMethodData": null,

 "creq": "0bWw+PGhlYWQ+CiAgICAgICAg1ldGEgSF48UVRVUlWPSJQcmFnbWEiIENPTlRF"

}

HTTP/1.1 200 OK

Content-Length: 2153

Content-Type: application/json;charset=UTF-8

{

 "transactionId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "status": "INITIALIZED",

 "pageContent": null,

 "externalTransactionId": "49a91f00-26b4-49a2-9c77-ed37646ddf64",

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "acsUrl": null,

 "threeDsMode": "THREE_DS_METHOD",

 "threeDsMethodUrl": "http://three-ds-method-site.com",

 "threeDSMethodData": "YW5zSUQiIDogImQ4ODhjOGEwLNWJkNy04MDAwLTAwMDAwaW9uQXN5bmMiIH0",

 "creq": null

}

Response fields:

Type Value Constraints

pageContent Null
This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

externalTransactionId String External transaction id

acsUrl Null
URL address of ACS. Browser should
be redirect on this address with
passing creq/pareq parameter.

threeDsMode String
ThreeDS process mode which informs
about. One of: [CHALLENGE,
THREE_DS_METHOD, FRICTIONLESS]

threeDsMethodUrl Null
URL for perform THREE_DS_METHOD.
Present when
threeDsMode=THREE_DS_METHOD

threeDSMethodData Null

Parameter which should be pass
(without changes) with redirection to
ACS URL. Only in THREE_DS_METHOD
flow

itemId String
Merchant’s unique id of transaction.
Ensures the idempotency of the
transaction.

creq Null

cReq message which should be
transferred (with no changes) with
redirection to the ACS url address.
Present when threeDs with
CHALLENGE

POST [base-url]/one-time-payment/3ds/continue

The method allows continuing payment using ThreeDs 2.0 protocol. This method should be
executed after perform process ThreeDsMethod flow - this step is mandatory only when
ThreeDsMethod flow is present (Initialize payment with 3ds returned threeDsMode =
THREE_DS_METHOD). The Continue one time payment with 3ds method can be performed
directly by the Merchant or internally by Verestro - depending on the Merchant's decision.

Continue one time payment with 3ds

Selecting the option in which Verestro performs the Continue one time payment with 3ds
method releases the customer from the need to integrate this method. In addition, in this
situation, the Merchant does not need to handle the threeDsMode=THREE_DS_METHOD

https://developer.verestro.com/books/web-checkout/page/technical-documentation#bkmrk-initialize-one-time-

Method Continue one time payment with 3ds requires parameter methodCompletionIndicator to
be set in the request:
Y - when notification after from acs on the threeDsMethodNotificationUrl was present
N - when notification after from acs on the threeDsMethodNotificationUrl was not present
U - no information about notification

As a response there are 2 possible paths:

Frictionless flow - In response: threeDsMode = FRICTIONLESS are present. This
response denotes that payment was finished.
Challenge flow - In response: threeDsMode = CHALLENGE is present. This response
denotes that the challenge process is required. In this flow pageContent is present. The
parameter should be decoded and presented to the user for interaction (challenge). After
the challenge end, html will redirect the user to URL passed in the termUrl parameter. The
Finalize one time payment with 3ds request should be performed then.

Request headers:

Type Value Constraints Description

Content-Type application/json Required Content type of the request

Authorization Basic
bG9naW46cGFzc3dvcmQ= Required Basic Authorization token

Request body:

Request fields:

 case, because it will never occur.

POST /champion/one-time-payment/3ds/continue HTTP/1.1

Content-Length: 181

Content-Type: application/json

Host: merchant.upaid.pl

{

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "methodCompletionIndicator": "Y",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY..."

}

Type Value Constraints Description

itemId String Not empty Transaction amount (in
pennies)

methodCompletionIndicator String Not empty

Flag informs about invoke
3DS Method:
Y = success,
N = failed,
U = no data

encryptedData String Not empty

The field contains
encrypted JSON using the
JWE standard. Object
EncryptedData is described
in section of schemas.

Example cURL:

Response body:

HTTP Response OK - FRICTIONLESS:

$ curl 'https://merchant.upaid.pl/champion/one-time-payment/3ds/continue' -i -X POST \

 -H 'Content-Type: application/json' \

 -d '{

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "methodCompletionIndicator": "Y",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY..."

}'

HTTP/1.1 200 OK

Content-Length: 2153

Content-Type: application/json;charset=UTF-8

{

 "transactionId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "status": "DEPOSITED",

 "approvalCode": "20210615100078475104",

 "pageContent": null,

HTTP Response OK - CHALLENGE:

Response fields:

Type Value Constraints

transactionId String Identifier of transaction

status String Transaction status

approvalCode String Acquirer approval code

 "externalTransactionId": "49a91f00-26b4-49a2-9c77-ed37646ddf64",

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "acsUrl": null,

 "threeDsMode": "FRICTIONLESS",

 "threeDsMethodUrl": null,

 "threeDSMethodData": null,

 "creq": null

}

HTTP/1.1 200 OK

Content-Length: 2153

Content-Type: application/json;charset=UTF-8

{

 "transactionId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "status": "INITIALIZED",

 "pageContent": "PGh0bWw+PFNDUklQVCBMQU5HVUFHRT0iSmF2YXNjcmlwdCI+Zn....",

 "orderNumber": null,

 "externalTransactionId": "49a91f00-26b4-49a2-9c77-ed37646ddf64",

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "acsUrl": "http://acs-site.com",

 "threeDsMode": "CHALLENGE",

 "threeDsMethodUrl": null,

 "threeDSMethodData": null,

 "creq": "0bWw+PGhlYWQ+CiAgICAgICAg1ldGEgSF48UVRVUlWPSJQcmFnbWEiIENPTlRF"

}

Response fields:

Type Value Constraints

externalTransactionId String External transaction id

itemId String
Merchant’s unique id of transaction.
Ensures the idempotency of the
transaction.

acsUrl Null
URL address of ACS. Browser should
be redirect on this address with
passing creq/pareq parameter.

threeDsMode String
ThreeDS process mode which informs
about. One of: [CHALLENGE,
FRICTIONLESS]

creq Null

cReq message which should be
transferred (with no changes) with
redirection to the ACS url address.
Present when threeDs with
CHALLENGE

POST [base-url]/one-time-payment/3ds/finalize

This method allows finalizing payment using ThreeDs 2.0 protocol. This method should be executed
after successfully performed challenge by the user.

Request headers:

Type Value Constraints Description

Content-Type application/json Required Content type of the request

Authorization Basic
bG9naW46cGFzc3dvcmQ= Required Basic Authorization token

Request body:

Finalize one time payment with 3ds

Request fields:

Type Value Constraints Description

itemId String Not empty Transaction amount (in
pennies)

cRes String Optional
Message obtained after
CHALLENGE process on the
endpoint passed in termUrl.

encryptedData String Not empty

The field contains
encrypted JSON using the
JWE standard. Object
EncryptedData is described
in section of schemas.

Example cURL:

Response body:

POST /champion/one-time-payment/3ds/finalize HTTP/1.1

Content-Length: 194

Content-Type: application/json

Host: merchant.upaid.pl

{

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "cRes": "IiOiI0ODY2Njc3Nzg4OCIsImludGVybmFsS",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY..."

}

$ curl 'https://merchant.upaid.pl/champion/one-time-payment/3ds/finalize' -i -X POST \

 -H 'Content-Type: application/json' \

 -d '{

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "cRes": "IiOiI0ODY2Njc3Nzg4OCIsImludGVybmFsS",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY..."

}'

HTTP Response OK:

Response fields:

Type Value Constraints

transactionId String Identifier of transaction

itemId String
Merchant’s unique id of transaction.
Ensures the idempotency of the
transaction.

status String Transaction status

externalTransactionId String External transaction id

GET [base-url]/one-time-payment/public-key

This method allows to get publicKey. This method is auxiliary for other methods: One Time
Payment. Obtained public key will allow the Merchant to encrypt sensivite data of the transaction
he collected from the user. This data is required to perform transaction.

HTTP/1.1 200 OK

Content-Length: 251

Content-Type: application/json;charset=UTF-8

{

 "transactionId" : "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "itemId" : "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "paymentAmount" : 100,

 "status" : "DEPOSITED",

 "externalTransactionId" : "49a91f00-26b4-49a2-9c77-ed37646ddf64",

 "links" : []

}

Get public key

Request headers:

Type Value Constraints Description

Content-Type application/json Required Content type of the request

Authorization Basic
bG9naW46cGFzc3dvcmQ= Required Basic Authorization token

Request body:

Example cURL:

Response body:

HTTP Response OK:

GET /champion/one-time-payment/public-key HTTP/1.1

Content-Type: application/json

Host: merchant.upaid.pl

$ curl 'https://merchant.upaid.pl/champion/one-time-payment/3ds/finalize' -i -X POST \

 -H 'Content-Type: application/json' \

 -d '{

 "itemId": "08ea8e28-0aad-45eb-8368-f15bdadd5eba",

 "cRes": "IiOiI0ODY2Njc3Nzg4OCIsImludGVybmFsS",

 "encryptedData": "eyJ0eXAiOiJKT1NFIiwiZW5jIjoiQTI1NkdDTSIsImlhdCI6MTY0NDkxMjk5MSwiY..."

}'

HTTP/1.1 200 OK

Content-Length: 610

Content-Type: application/json;charset=UTF-8

{

 "value" :

"LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUlJQklqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FROEFNSUlCQ2dLQ0FRR

UE5QXdvaDlzRW1CeDFUK2llb0lVMWpLUVJuUmg3SGFBS0tHdGdPTFQ3WDIyYlVuaHNDbld0SEVSR2pOcVBsQ205Wmh5SHo

2ajFlSi9UVmdhQ1NEYmtKZFNUMmpCVDZDKzBKb0NnYld0S2EwbllIMVI4NWNVWUgzT3dYcFBZSHhGMW1MRlRVU2doUXFBV

XZ1QzVla2FTQi9lTGV2WmRXTTcyazAybTZ0bGJUVWRhbUtQRnp1VzhxMGpZYUZ0Z01XYXlZUG81WXJJU1ZWWVZTVGdVZjZ

qR2ZCQUZ3N2d5dHVBaFlUMTVpT2g0NWtpc2pZb1BzaEd2RitqQ0FSbzlDMDhKSTdubVVGSEUrczNYQm84S0t0THNNKzhvc

WNZdy9maVhIbkljSHNvcTQ2bnBWMEtTWW9MZm5pa0hnTnoxUFR0dnpBZ29NeXdSSDVrdURhYmNEeVRoZVFJREFRQUIKLS0

tLS1FTkQgUFVCTElDIEtFWS0tLS0t"

Response fields:

Type Value Constraints

value String Public key encoded with Base64

GET [base-url]/transactions/${transactionId}

This method is optional and does not affect the process of the transaction itself. Nevertheless,
Verestro recommends using this method. In case of any problem with the connection, it allows the
Merchant to know the current status of a given transaction. This method is secured by Merchant's
account credentials (basic authorization). Merchant's account is created by Verestro during the
onboarding process.

Request headers:

Type Value Constraints Description

Authorization: Basic
bG9naW46cGFzc3dvcmQ= Required Merchant's account

credentials

Content-Type application/json Required Content type of the request

Response body:

}

Get transaction details

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 245

{

 "transactionId" : "ee58ef03-d6ed-4a07-8885-d050c439ec6c",

 "amount" : 100,

 "currency" : "PLN",

 "description" : "description",

 "status" : "DEPOSITED",

https://developer.verestro.com/books/web-checkout/page/onboarding

Response fields

Name Name Description

transactionId String

Identifier of transaction. This
parameter should be provided in the
deposit method if the tokenPayment

method returned AUTHORIZED
transaction status. This parameter
also defines in the context of which
transaction Verestro should return
information when executing the
getTransactionDetails method.

amount Number Transaction amount in pennies

currency String Transaction currency

description String Transaction description

status String
One of the possible transaction
statuses

threeDsMode String
ThreeDS process mode which informs
about

Example cURL:

This chapter lists examples of errors that may occur when using the One Time Payment API
solution.

HTTP Response - VALIDATION_ERROR:

 "threeDsMode" : "FRICTIONLESS"

}

$ curl 'https://merchant.upaid.pl/champion/transactions/ee58ef03-d6ed-4a07-8885-d050c439ec6c'

-i -u 'login:password' -X GET \

 -H 'Content-Type: application/json'

Error examples

HTTP/1.1 400 Bad Request

Content-Length: 32

Content-Type: application/json;charset=UTF-8=

{

https://developer.verestro.com/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-deposit
https://developer.verestro.com/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-token-payment
https://developer.verestro.com/books/token-payment-service/page/integration-with-token-payment-service#bkmrk-get-transaction-deta

HTTP Response - UNAUTHORIZED:

HTTP Response - UNPROCESSABLE_ENTITY:

HTTP Response - INTERNAL_SERVER_ERROR:

 "status": "VALIDATION_ERROR",

 "message": "Some fields are invalid",

 "data": [

 {

 "field": "{{field_name_from_request}}",

 "message": "{{message}}"

 }

],

 "traceId": "{{traceId}}"

}

HTTP/1.1 401 Unauthorized

Content-Length: 32

Content-Type: application/json;charset=UTF-8=

{

 "timestamp": "{{timestamp}}",

 "status": 401,

 "error": "Unauthorized",

 "message": "Unauthorized",

 "traceId": "{{traceId}}"

 "path": "{{path}}"

}

HTTP/1.1 422 Unprocessable Entity

Content-Length: 32

Content-Type: application/json;charset=UTF-8=

{

 "status": "ERROR_INVALID_CVC",

 "message": "Invalid cvc",

 "traceId": "{{traceId}}"

}

HTTP/1.1 500 Internal Server Error

Content-Length: 32

Content-Type: application/json;charset=UTF-8=

{

 "status": "INTERNAL_SERVER_ERROR",

 "message": "Internal server error exception",

 "traceId": "{{traceId}}"

}

Revision #96
Created 6 June 2022 05:31:53 by Jakub Kotyński
Updated 2 March 2023 14:58:03 by Jagoda Mazurek

