
Lifecycle API The main purpose of a web service is to add a user and payment cards in a safe way
to dedicated database PCI DSS compliant systems, which are provided by Verestro. By registering
in the database, the partner can use various services provided by the Verestro company, e.g. Card
Issuing, Card tokenization, Money Transfers and more. The API allows to mass import of data files
to Verestro systems, such as: user, user with a card, or cards. Using the HTTPS REST protocol, you
can add a new resource (user or cards), update their status, e.g. lock, unlock or completely remove
a resource from system.

LIfecycle API is an internal service secured by x509 certificate, which increases the safety of
transported data. The API communicates with the data storehouse called DataCore. DataCore is
internal service and one of crucial components of Verestro's product line-up. Its main responsibility
is to provide secure, PCI-DSS compliant storage for cardholder data. DataCore manages the status
of the user and their aggregates. All other product in implementation connect to DataCore which
returns information about the user and his aggregates.

Lifecycle API is a part of PCI zone of Verestro platform so it meets all standards and restrictions of
secure data storage. All fragile data is secured and encrypted.

We are using HashiCorp Vault as a Software HSM.

The master key isn't stored anywhere. It is reconstructed in unsealing process. It is used to
encrypt encryption key. The data stored by Vault is stored encrypted. Therefore, to decrypt the
data, Vault must decrypt the encryption key which requires the master key. Unsealing is the
process of reconstructing this master key.

Instead of distributing this master key as a single key to an operator, Vault uses an algorithm
known as Shamir's Secret Sharing to split the key into key shards. A certain threshold of shards is
required to reconstruct the master key.

More information

Overview

Security
Data Storage

https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing
https://www.vaultproject.io/docs/concepts/seal.html

When the Vault is initialized it generates an encryption key which is used to protect all the data.
The encryption key is also stored with the data, but encrypted with another encryption key known
as the master key. Once Vault retrieves the encryption key, it is able to decrypt the data in the
storage backend, and enters the unsealed state. Vault uses 256-bit AES to encrypt Encryption Key.

All sensitive data is encrypted in this way.

LC api allows to encrypt fragile card data. Detailed description is provided below.

To encrypt fragile card data you should use JWE. If you are unfamiliar with this kind of standard
please look at links below:
Wiki,
RFC,
Example.

The setup for Lifecycle JWE is presented below:

in headers:
alg: RSA-OAEP-256 - keyEncryptionAlgo,
enc: A128GCM/A256GCM - contentEncryptionAlgo,
zip: DEF,
iat: this field should contain current timestamp,
kid: SHA1 of thumbprint of public key used to generate JWE (Static values is:
Pdk08OtjTS6-I7H_E96XKme0BOY),

in body: plaintext json data. Please see example below.

Public key used to generate JWE can be found here. //TODO: add file with public key for dev.

During development you can use test methods that allows to generate and check your
implementation of JWE:

PAYLOAD - json string used to generate JWE, for example:

{ "pan" : "5555444433331234" , "expiryDate" : "2040-11-30" }

Encryption of fragile data

JWE Standard

JWE Examples

https://en.wikipedia.org/wiki/JSON_Web_Encryption
https://tools.ietf.org/html/rfc7516
https://web-token.spomky-labs.com/
https://wiki.verestro.com/display/LV/Configuration

ISSUER - string provided by DC Team during integration
EXAMPLE_JWE - JWE to be validated and decoded

Generate JWE

curl --location --request GET 'https://datacore.upaidtest.pl/test/generate-jwe-token/PAYLOAD' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Basic dGVzdDE6dGVzdDEyMw==' \
--header 'ISSUER-CODE: ISSUER' \
--header 'COLLECTION: internal'

Read JWE

curl --location --request POST 'https://datacore.upaidtest.pl/test/read-jwe-token' \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header 'Authorization: Basic dGVzdDE6dGVzdDEyMw==' \
--header 'ISSUER-CODE: ISSUER' \
--header 'COLLECTION: internal' \
--data-raw '{

 "token" : "EXAMPLE_JWE"
}'

Hash HMAC

Lifecycle also provides configuration called idType. It is simple tool that can be used if you can't
store LC internal id's.
There are two main id types: useridType and cardIdType. All possible options for both are
presented in LC API specification.
Here we are describing case when cardIdType is set to hash.
Hash value is as SHA-256 HMAC, please see links below for more details:
RFC,
Wiki,
Java example.

Test value of key used to calculate HMAC in HEX

59c6d62dde38d8a2c32105a53336b8ef

To validate your implementation please check plain and hashed values below:

"5555444433332222" "4f64c445c859f7e53209e0091a5faef7e8b3ebbad899fbf8c74df09a6bfe5646"
"6984576897634895763948576" "4b2eab65ab16183fa6ac8a8b12ad690890db98c5ce20e6d56aa037b723bbe842"
"someTestValue398048096859607" "9596a78a7382e90159d8ec78a8d37baff57d05f676c0607dd7fb24b0396270ce"

https://datacore.upaidtest.pl/test/generate-jwe-token/PAYLOAD'
https://datacore.upaidtest.pl/test/read-jwe-token'
https://tools.ietf.org/html/rfc4868#page-3
https://en.wikipedia.org/wiki/HMAC
https://gist.github.com/MaximeFrancoeur/bcb7fc2db08c704f322a

Lifecycle file import is a mechanism that allows you to create a file with multiple instructions for
api. Each instruction is like an request. Instead of sending 10.000 requests to API, which may take
ages, you can create single file with all those instructions and let our system handle it
asynchronously. Once import is completed an report is generated which will contain errors and
information about processed rows. Files with instructions should be uploaded onto SFTP. To get
access details, a new integration needs to be set up for bank.

File storage with directories:

/input for input files
/output for output files (reports)
/processed for files that were processed

Input files should be uploaded onto storage into 'input' directory. Everyday at 12:07 am a cron job
will run and process those files.

File format is json line (jsonl). In short this is a file that contains valid json in every line (separated
by line break, not a comma etc.).

Each line is a single instruction for our import mechanism. Example file below:

Lifecycle Import
Info

Requirements

Input

File example

{"method":"addUser","data":{"externalId":"48111111111","firstName":"First","lastName":"User","

phone":"48111111111","email":"you@post.com","birthDate":"1979-10-

06","wPIN":"1234","state":"VERIFIED"}}

{"method":"addUser","data":{"externalId":"48222222222","firstName":"Second","lastName":"User",

"phone":"48222222222","email":"me@post.com","birthDate":"1979-10-

06","wPIN":"1234","state":"VERIFIED"}}

{"method":"addUser","data":{"externalId":"48333333333","firstName":"Third","lastName":"User","

Each line is a JSON with two keys:

method - name of method you're calling (supported methods below),
data - request body.

For example result of importing first line of example file is similar to making a request to
/lifecycle/v1/users with body:

At the moment the only one supported method is addUser (
https://datacore.upaidtest.pl/documentation-lifecycle/#api-Lifecycle-user_add).

Processing is handled asynchronously. It means that once file is read, every line will be changed
into a "job" and then processed by our "workers". After reading whole file it is moved to processed
 directory. PS. This does not mean that the import is completed.

If workers encounter any troubles during handling their job an error message will be inserted into
report file. Structure of error line is "X, ERROR_MESSAGE" where X is the line number from import
file and ERROR_MESSAGE is just the error message. Examples presented in Output section.

Once import is completed an line with rows processed information is inserted into the report file.
You can find report files inside output directory. Report file name is
$input_file_name_without_extension-report.csv. Example input/output file with names below.

Example input file

input_file.jsonl

phone":"48333333333","email":"validemail@post.com","birthDate":"1979-10-

06","wPIN":"1234","state":"VERIFIED"}}

Line explaination

{"externalId":"48111111111","firstName":"First","lastName":"User","phone":"48111111111","email":"you@post.com","birthDate":"1979-10-06","wPIN":"1234","state":"VERIFIED"}

Supported methods

Processing

Output

https://datacore.upaidtest.pl/documentation-lifecycle/#api-Lifecycle-user_add

Example output file

input_file-report.csv

Typical error messages:

INVALID_JSON - there was an error while trying to decode line (first line of example input file).
INVALID_METHOD - invalid/unsupported method (fourth line of example input file).
UNKNOWN_ERROR - unhandled error (contact DC team for more info).

As you may have noticed there is also an error message encoded in json format. This is the same
response that you would receive in a normal api call.

PS. Successfully processed line doesn't produce any output in report file (that's why there is no
status for 2nd line).

/users/{id}/cards/{cardId}?userIdType={userIdType}&cardId=internalId

id - value defines user identifier.
userIdType - type of value that identifies user. Supported options:

phone,

{invalid json :((}

{"method":"addUser","data":{"externalId":"48222222222","firstName":"Second","lastName":"User",

"phone":"48222222222","email":"me@post.com","birthDate":"1979-10-

06","wPIN":"1234","state":"VERIFIED"}}

{"method":"addUser","data":{"externalId":"48333333333","firstName":"Third","lastName":"User","

phone":"48333333333","email":"validemail@post.com","birthDate":"1337","wPIN":"1234","state":"V

ERIFIED"}}

{"method":"thisWillNotWork","data":{"externalId":"4833"}}

1,INVALID_JSON

3,{"errors":{"phone":["VALUE_HAS_TO_BE_UNIQUE"],"birthDate":["DATE_IS_INVALID","DATE_FORMAT_IS

_INVALID"]}}

4,INVALID_METHOD

Total rows processed: 4

Lifecycle API usage
URL construction

email,
externalId - provided by partner,
internalId - provided by Verestro (default option),
hash – card hash provided by bank.

Field Description

Authorization Basic Access Authentication token.

Accept application/json .

Content-Type application/json .

Accept-Language Options: en, pl, ...

Issuer-Code Wallet name. This value is provided by datacore team.

Collection Collection name. Options: lifecycle .

Application-Id The unique name of the application, e.g. "admin-panel" .

X-B3-SpanId This is the id of the specific operation. Link .

X-B3-TraceId This is a global id that is used to identify a sequence of
requests / responses in the whole system. This means that
it should be passed between all websites in requests /
responsives. In case it is null then of course you have to
generate a new one, because it means that this is the first
request from an external client.

Headers

Revision #12
Created 29 June 2022 05:33:35 by Jagoda Mazurek
Updated 26 July 2022 09:55:38 by Jagoda Mazurek

