Overview

Verestro Cloud Payments is a solution developed to facilitate adopting cloud-based payments for
the Customers. VCP provides functionalities for User identification and verification, Payment
Instruments digitization and User data management. Cloud payments enables a card to be
digitized into a wallet application on a mobile device and used for payment without the need for a
Secure Element (SE) or a Trusted Execution Environment (TEE) to protect the card’s sensitive
assets, such as the keys needed for calculating the Application Cryptogram.

Master Keys for the digitized card are kept securely on remote servers(for plastic in the chip),
hence the term ‘cloud-based payment,” and a limited number of keys (where each key can only be
used to perform a single transaction) are downloaded to the application.

Solution consists of:

e server components:

o Wallet Server - backend component,

o Wallet Admin Panel - frontend component,
e mobile components:

o Wallet SDK - Android libraries.

Benefits of Payment Token

The MCBP service is an easy and secure way to replace a plastic payment card with a payment
token. Recognition to the tokenization and digitization process without leaving the house, we can
add our payment card to the mobile application and use only a mobile device during purchases.
The benefits of tokenization are felt by every participant in the process:

Issuer - by implementing the tokenization service, it will provide its customers with much higher
and safer access to innovative payment solutions.

Card Holder - can freely use innovative payment solutions. The tokenization service will allow free
and secure payments using any devices connected to the internet.

MCBP Introduction

Mastercard Cloud-Based Payments (MCBP) is technology which enables a card to be digitized into
an application on a mobile device. On plastic card, Master Keys needed for calculating cryptogram
are stored in the Secure Element. Using MCBP there is no need for Secure Element since keys



needed for calculating the cryptogram are kept securely on remote servers, hence the term ‘cloud-
based payment,” and a limited number of keys (where each key can only be used to perform a
single transaction) are downloaded to the application. VCP is solution which provides functionalities
for digitization, user data management and payments needed for final Customer to adopt MCBP.

MCBP High Level Architecture

__________________________________________________ Acquirer
I1SO 8583 Catoway Auth Cryptogram |:|

000
000
000

Remote
NotificationService

MPA

| Verestro
: Wallet
SDK

----- MDES API - - - JEAECEEURY
' Server

Issuer Services

Mastercard

MCBP Key Components

Component Description

MPA Android Mobile Payment Application provides frontend
interface to the user and uses part of Verestro Wallet SDK
which is responsible for payments using HCE.


https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654374212441.png

Verestro Wallet Server Provides the backend services to support Mobile Payment
Application via Verestro Wallet SDK and is responsible for
managing users, devices, cards, Payment Tokens and
communication with MDES. Wallet Server acts as Token
Requestor on behalf of Issuer in context of digitization.

Verestro Wallet SDK Provides all functionalities needed for MPA to perform all
needed operations related to MCBP.

MDES Token Service Provider which supports
digitization(transforming the card into Payment Token)
and is responsible for management, generation and
provisioning of transaction credentials into mobile devices
to enable simpler and more secure digital payment
experience.

Remote Notification Service Wallet Server communicates with the MPA also using
Remote Notification Service. For Android is used Firebase
Cloud Messaging.

Issuer Issuer is responsible for card issuing, accepting
authorization digitization requests and accepting
transactions which uses token.

Description

Wallet Types

VCP supports following wallet types which can be used in the implementation:

e OPEN - user registers itself in the application and provides data like PAN etc.,

e CLOSED - user data are passed automatically from Customer servers without User
interaction to Wallet Server.

Implementation Models

Verestro provides two different implementation models for products: integrated and standalone
version.

Integrated

In this model Customer is owner of MPA. Verestro provides Wallet SDK and Wallet Server. Customer
is responsible for direct User authentication and passes the result of the authentication to Wallet
SDK. Online operations which need to be performed by User using Wallet Server require valid



session on Wallet Server. To obtain user online session with Wallet Server, Customer needs to pass
Trusted ldentity.

Standalone

In this model Verestro provides MPA, Wallet SDK and Wallet Server. Furthermore, Verestro
manages direct user authentication.

Architecture

Mobile Payment MDES
API

MDES Inbound
API

|

MDES Outbound
API

Issuer

Wallet Server

Remote Notification
Service

ADMIN API

= -

Verestro Admin Panel
Mobile API

Issuer Mobile
Payment Application

Wallet SDK

Server Components

Server components are applications which need to be deployed on remote server to make possible
to connect them by network.

Deployment Models


https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654374565801.png

Verestro offers two deployment models of server components. On-premise and SaaSs.

SaaS - Server components are designed to be deploy in SaaS model. In this case everything is
deployed and configured on Verestro side. Verestro is responsible for maintaining infrastructure,
deploying applications and monitoring.

On-premise - Server components also can be deployed on Customer infrastructure. Applications are

designed to be deployed using Kubernetes as system for automating deployment, scaling, and
management of containerized applications. For more details please contact Verestro
representative.

Wallet Server

Wallet Server - is backend component which consists of few internal services which are responsible
for managing users, devices, cards, Payment Tokens, transaction history. It acts as Token
Requestor on behalf of Issuer and is compliant with PCI Data Security Standard.

It exposes:

mobile API - available via Wallet SDK to performs operations directly from mobile device,
LC API - server API dedicated for Issuer to manage users and cards data on Wallet Server,
admin API - server api dedicated for admin panel frontend,

MDES Outbound API - server API dedicated for MDES.

Verestro Cloud Payments External API - dedicated for external clients(e.g. Issuer) to
manage Payment Tokens

Wallet Server operates with domain objects like:

e User - root of entity tree. User is identified in Wallet Server via some unique identifier
which can be external id given by Customer. User can have access to his data and
operations based on session. Session is created after paring device and when is expired
then User authentication needs to be performed. Session is valid configurable period of
time.

e Device - belongs to User. When User starts using application after installation then device
pairing is performed. After pairing device with some unique id(constant across
installations and users), unique device installation id is generated and this installation is
assigned to particular User. It is possible to have one active installation on specific device
for specific User. If other User starts using application on same device then another device
pairing is performed and all data from previous installation will be wiped.

e Card - belongs to User. User can have many cards. Card is identified via internal id given
after storing card on Wallet Server. Whole PAN is stored on Wallet Server(always or short
period of time).

e Payment Token - after PAN digitization, device Payment Token is created also on Wallet
Server side without any sensitive data. One PAN can have one device Payment Token on
specific device installation at the same time which is INACTIVE, ACTIVE or SUSPENDED.


https://kubernetes.io/

has PAN -

is digitized for
contactless payments
on device installation

Device Payment Token

for PAN abc »))

has Device Installation - s A

is digitized for
Device Payment Token contactless payments
for PAN xyz ) on device installation

Device Installation one User

User

Device Payment Token

for PAN abc »))

is digitized for
contactless payments

has Device Installation - « on device installation
Device Payment Token :
for PAN xyz 1))
Device Installation two User
is digitized for

contactless payments

on device installation
has PAN * *

PAN xyz



https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654374710316.png

Wallet Admin Panel

Web frontend application which is dedicated for back office to manage all User data.

Delivery

Mobile Components

Wallet SDK

Verestro provides Software Development Kit (SDK) called Wallet SDK which can be used in Mobile
Payment Application. As a company, Verestro provides many products which can be used in single
application. For that reason Wallet SDK is divided into separated modules which covers different
functionalities. There are two main modules dedicated for Verestro Cloud Payments: MDC SDK and
VCP SDK. MDC SDK is core Verestro module responsible for user data management: authentication,
payment cards management - since these are main functionalities used in every product. VCP SDK
is dedicated for performing digitization and payments using Payment Token. In payment context
VCP SDK wraps Mastercard Cloud Based Payment SDK.

Requirements

Wallet SDK has some mandatory requirements to make it work:

e device cannot be rooted,
e Android OS image (ROM) should be genuine in version 6.0 (Marshmallow) or above,
e devices cannot have enabled debugging.

There are also some not mandatory requirements, but Customer needs to be aware of them to
maintain functionalities:

e NFC module necessary for HCE payments,
e lock screen necessary for locally-verified user authentication.

Security

Wallet SDK was developed according to security requirements included in Security Guide

MCBP SDK for Android. However Wallet SDK cannot guarantee full MPA protection and MPA must
provide additional layer of security to protect user interface(mainy when PAN is manually entered
in the application) and data processing within application. More detailed information can be found
in Wallet SDK API. Moreover all sensitive data are passed as chars or bytes arrays. Wallet SDK
copies the arrays and clears that copies just after processing. MPA should clear provided sensitive
data immediately after passing them to Wallet SDK.



Security Checks and Data Clearing

On Wallet SDK side are performed security checks which includes static code analysis protection
and dynamic analysis protection. Security checks consists of:

root access detection,
hooking protection,
debugging protection,
custom ROM protection,

e data tampering protection,

e man in the middle protection.

Security checks are performed periodically, if Wallet SDK detects any of above things all data hold
by Wallet SDK will be cleared and security report will be sent to Wallet Server. MPA will be informed
about such detection.

Communication with Wallet Server

Communication from genuine applications which are installed on genuine devices is accepted by
the Wallet Server. Wallet SDK at the very beginning performs authentication of application and
device to Wallet Server. This authentication may takes advantage of Google Play Integrity which is
3-rd party trusted side in whole authentication. Google Play Integrity verifies device and sign
information about device and application. Signed data from Play Integrity are sent to the Wallet
Server. Wallet Server verifies data and allow or does not allow for further communication.
Application is verified according preconfigured application certificate digest used for signing
application.

Important: There is a limit of requests to Google Play Integrity API: 10 000 per day. If Customer
predicts that there will be more installations per day then this limit needs to be increased during
Google Project Setup.

Wallet SDK communicates with Wallet Server using TLS 1.2. Wallet SDK performs public key
certificate pinning when it tries to establish connection with Wallet Server (similar with connection
to MDES). Certificates for the pinning needs to be provided to SDK. Sensitive information are
additionally encrypted and/or signed.

Versioning

Wallet SDK uses semantic versioning. It means that every release has own version which is
MAJOR.MINOR.PATCH, where:

e MAJOR version increases when SDK has incompatible API changes,

e MINOR version increases when new functionality is added in a backwards compatible
manner,

e PATCH version increases when new backwards compatible bug fixes are introduced.



MAJOR versions are supported 6 months and Customer needs to migrate to new version if they
want to maintain support.

Remote Notification Service

Wallet SDK is responsible for remote notification processing. However MPA is responsible for
obtaining FCM registration token, handling FCM token update and receiving remote notifications.
Before passing remote notification to SDK, MPA needs to verify if given message is dedicated for
SDK by checking sender Id. Sender Id is configured during onboarding. Verestro will create new
FCM project and provide data needed to obtain FCM token for given project. Due to observing some
issues with FCM token refresh notification from FCM service, additional check of new token
availability is recommended(eg. on application start). See more in Wallet SDK API.

Access

Wallet SDK is stored as artifacts in maven repository. Access there is provided during onboarding
by Verestro representative.

Configuration

Whole product has configuration which needs to be fulfilled. This configuration also consists of data
which are set in MDES. More details are described in Wallet Configuration.

User Experience for Contactless
Transactions

MDES offers a few options for customers for defining user experience for contactless transactions.
Final option is the choice of CDCVM type (Mobile PIN, Locally-verified CDCVM) and CVM model
(Always, Flexible, Card-like).

CDCVM Types

There are two types of Consumer Device Cardholder Verification Method (CDCVM) which are
supported by MDES.

Mobile PIN CDCVM

A PIN value (4-8 digits) that the cardholder enters on the mobile device and that is validated online
by MDES during the transaction authorization process. Since Locally-verified is mostly preferable
option, Mobile PIN is out of scope.

Locally-verified CDCVM



A CDCVM entered on and validated by the consumer’s mobile device, for example system device
PIN, pattern, password or biometric methods (such as fingerprint, iris or facial recognition). Swipe
(slide to unlock) is not a valid cardholder verification method and must not be supported. These
methods are commonly associated with a device unlock process and are validated on the
cardholder’s mobile device. The payment component embedded in the Mobile Payment Application
will use the outcome of this authentication process. A Locally-verified CDCVM applies to all the
payment tokens of a given Mobile Payment Application instance (“Wallet-level”). In some parts of
system this type is also named as Custom.

CVM Models

For two CDCVM types customer can apply different user experience CVM Models.

Always CVM

In this model the card profiles supplied to the SDK are configured to indicate that the mobile device
supports on-device cardholder authentication. When transactions are performed on a POS
supporting CDCVM, the POS will delegate cardholder authentication to the mobile device the
terminal will not request an Online PIN on the terminal. In POS which does not support CDCVM
cardholder authentication is required using Online PIN. This model requires the cardholder’s mobile
device to authenticate the cardholder for all transactions (LVT, HVT, Transit). CDCVM can be
performed using either a Mobile PIN or a Locally-verified CDCVM. MPA is expected to decline any
transaction for which cardholder authentication is not performed or is unsuccessful.

Below are presented sample diagrams which show how the transactions can look like:

Always LVT, HVT - single tap

Always - single tap

$4,99 D
880 000 v
o]e) S 000

T 000 :

Merchant enters User performs User taps on Transaction
amount in terminal authentication the terminal proceeds
using CDCVM

Always LVT, HVT - double tap


https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375111845.png

Always - double tap

Aok

$4,99 D
880 000
o]e) ) 000

000

[
-

Merchant enters User performs first App launches and invokes CDCVM

amount in terminal top on the terminal screen (localy verifed CDCVM or
Mobile PIN entry)

)

000 v

r 000

User moves the device away User performs Transcation proceeds
to perform authentication second tap on
using CDCVM the terminal

Flexible CVM

In this model the card profile also indicates that the mobile device supports on device cardholder
authentication Mobile PIN or Locally-verified CDCVM. However rather than applying authentication
for every transaction the MPA defines flexible criteria such as allowing multiple transactions
between each authentication. This criteria are often names as Lost & Stolen options or velocity
checks. For transit transactions cardholder authentication is not expected.

Below are presented sample diagrams which show how the transactions can look like:

Flexible LVT
Flexible LVT
$4,99 D
939 ) 000 v

Q00
KW

User taps on Transcation proceeds

Merchant enteres
amount in terminal the terminal


https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375121955.png
https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375214373.png

Flexible HVT - single tap

Flexible HVT

$4,99 -
880 000 v
oc@ - 838

§. )3 000 :

Merchant enters User performs User taps on Transaction
amount in terminal authentication the terminal proceeds
using CDCVM

Flexible HVT, LVT with Velocity counters - double tap

Flexible with counters - double tap

$99,99
880 % Hokdok
00 ) Q00

000 v

Merchant enters User performs first App launches and invokes CDCVM
amount in terminal top on the terminal screen (localy verifed CDCVM or
Mobile PIN entry)

v

]
D) 332 v
v 000 :

User moves the device away User performs Transcation proceeds
to perform authentication second tap on
using CDCVM the terminal

Card-like CVM

In this model the card profiles supplied to the SDK are configured to indicate that the mobile wallet
is not capable of supporting on device cardholder verification. This means that when transactions
are performed with a Point of Sale (POS) terminal, the POS will treat the transaction in the same
way as a card transaction. Typically this means that low value transactions (LVTs) will be processed
without additional user authentication and if supported, high value transactions will require an


https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375231686.png
https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375238935.png

online PIN to be provided on POS. This model is put here just for general information, however it is
not preferred for issuer wallets.

Below are presented sample diagrams which show how the transactions can look like:

Card like LVT
Card like LVT
$4,99 D
2an ) 900 v
Q00
0
Merchant enteres User taps on Transcation proceeds
amount in terminal the terminal
Card like HVT
Card like HVT
54,99 L
000 (J 000
o]e]

00 000
lole) 000 00, v
000 :

Merchant enters User taps on User enters Online Transaction
amount in terminal the terminal PIN (if supported) proceeds

Lost & Stolen Options

The Lost & Stolen options are dedicated to control performing transactions allowed before requiring
cardholder authentication. This limits fraud risk if the cardholder’s mobile device is lost or

stolen. Lost & stolen options can be applied only for Flexible CDCVM. These options also are known
as velocity check counters. Wallet SDK provides interface which is invoked during transaction.
Transaction information like range, rich transaction type, amount are provided within this interface.
MPA can implement various checks to support velocity check counters using transaction
information. MPA for example can count LVT transactions and allow only some predefined number
of LVT transactions without cardholder authentication.


https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375297218.png
https://developer.verestro.com/uploads/images/gallery/2022-06/image-1654375302023.png

Transit Transactions

Transit transactions are transactions with given Merchant Category Code performed e.g. on traffic
gates like: underground. It is up to Customer if wants to enable such transactions or not (option
selected during MDES onboarding). Transit transactions are enabled in every CVM model, however
for Always CDCVM needs to be performed for every transaction, for Card-Like and Flexible CDCVM
can be skipped.

Tokenization/Digitization

Tokenization is a process which enable to replace sensitive data, e.g. card number, with another
string of characters - a secure payment token - as a result of which card data remains inaccessible.
Payment tokens are assigned to a given device of the card owner, which means that an
unauthorized person, even if he obtains the token data, will not be able to use them via another
device. It is also secured inside the SDK. As a result of the tokenization process, the customer
comes into possession of Transaction Credentials in a mobile application on his device.

Card Contractess
Digization

N
v
i

E]
v

Tokenization & .
S Transaction
digitization °

. services
services

MDES

Digitization decisions

e Green - Approve the digitization request without further cardholder interaction,
e Yellow - Approve the digitization request but seek additional cardholder authentication,
e Red - Decline the digitization.



Main processes

User and cards registration into wallet
server

User with unique identifier known on issuer side is passing with cards to wallet server. After that
process, device can be paired with.

Pairing device for particular user by
trusted identity

Authentication of the device in context of given user. Process needed to allow access to wallet
server from that particular device.

In the integrated model signed user identifier passed from issuer into wallet server via SDK is used
to authenticate given user.

Digitization of the card

When device is paired user can have access to his own data: cards. After that he can digitize
chosen card which was previously added into wallet server.

Digitized card profile provisioning on the
device

After successful digitization, digitized card profile is delivered to device. Since only limited humber
of keys for transaction is delivered to the device, SDK calls replenish to cover up the number of
transaction credentials.

Transaction credentials replenishment

Payment



Payment history(Optional)

It is possible to store transactions on wallet server.

Main steps and implementation

Issuer integration with MDES.

e Completing BPMS/ICG file - configuration for issuers in MDES,

o PAN ranges allowed for digitization,

o channel for the authorization cards for the digitization: predigitization API/ISO 8583

messages,

o digitization path,
Completing PCG file - configuration for token requestors(wallet configuration),

o parameters for connection,

o transactions user experience,

Exchanging certificates,
connection,
external wrapping key,

payload encryption to mdes,

o tav,
Adopt LC API to pass users and cards into wallet server and manage them later,
Integrate SDK into issuer application,

Implement signing user identity to authenticate user on wallet server via SDK.

o

o

o

Revision #19
Created 4 June 2022 13:47:30 by Wojciech Nowakowski
Updated 24 August 2023 05:58:35 by Jagoda Mazurek



